
Small. Fast. Reliable.

Choose any three.

About Sitemap Documentation

Download License News Support
Search SQLite Docs... Go

Command Line Shell For SQLite

The SQLite library includes a simple command-line utility named sqlite3 (or
sqlite3.exe on windows) that allows the user to manually enter and execute SQL
commands against an SQLite database. This document provides a brief introduction
on how to use the sqlite3 program.

Getting Started

To start the sqlite3 program, just type "sqlite3" followed by the name the file that
holds the SQLite database. If the file does not exist, a new one is created
automatically. The sqlite3 program will then prompt you to enter SQL. Type in SQL
statements (terminated by a semicolon), press "Enter" and the SQL will be executed.

For example, to create a new SQLite database named "ex1" with a single table named
"tbl1", you might do this:

$ sqlite3 ex1
SQLite version 3.6.11
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> create table tbl1(one varchar(10), two smallint);
sqlite> insert into tbl1 values('hello!',10);
sqlite> insert into tbl1 values('goodbye', 20);
sqlite> select * from tbl1;
hello!|10
goodbye|20
sqlite>

You can terminate the sqlite3 program by typing your systems End-Of-File character
(usually a Control-D). Use the interrupt character (usually a Control-C) to stop a
long-running SQL statement.

Make sure you type a semicolon at the end of each SQL command! The sqlite3
program looks for a semicolon to know when your SQL command is complete. If you
omit the semicolon, sqlite3 will give you a continuation prompt and wait for you to
enter more text to be added to the current SQL command. This feature allows you to
enter SQL commands that span multiple lines. For example:

sqlite> CREATE TABLE tbl2 (
 ...> f1 varchar(30) primary key,
 ...> f2 text,
 ...> f3 real
 ...>);
sqlite>

Command Line Shell For SQLite http://www.sqlite.org/sqlite.html

1 von 8 02.12.2010 14:59

Aside: Querying the SQLITE_MASTER table

The database schema in an SQLite database is stored in a special table named
"sqlite_master". You can execute "SELECT" statements against the special
sqlite_master table just like any other table in an SQLite database. For example:

$ sqlite3 ex1
SQLite version 3.6.11
Enter ".help" for instructions
sqlite> select * from sqlite_master;
 type = table
 name = tbl1
tbl_name = tbl1
rootpage = 3
 sql = create table tbl1(one varchar(10), two smallint)
sqlite>

But you cannot execute DROP TABLE, UPDATE, INSERT or DELETE against the
sqlite_master table. The sqlite_master table is updated automatically as you create or
drop tables and indices from the database. You can not make manual changes to the
sqlite_master table.

The schema for TEMPORARY tables is not stored in the "sqlite_master" table since
TEMPORARY tables are not visible to applications other than the application that
created the table. The schema for TEMPORARY tables is stored in another special
table named "sqlite_temp_master". The "sqlite_temp_master" table is temporary
itself.

Special commands to sqlite3

Most of the time, sqlite3 just reads lines of input and passes them on to the SQLite
library for execution. But if an input line begins with a dot ("."), then that line is
intercepted and interpreted by the sqlite3 program itself. These "dot commands" are
typically used to change the output format of queries, or to execute certain
prepackaged query statements.

For a listing of the available dot commands, you can enter ".help" at any time. For
example:

sqlite> .help
.backup ?DB? FILE Backup DB (default "main") to FILE
.bail ON|OFF Stop after hitting an error. Default OFF
.databases List names and files of attached databases
.dump ?TABLE? ... Dump the database in an SQL text format
.echo ON|OFF Turn command echo on or off
.exit Exit this program
.explain ON|OFF Turn output mode suitable for EXPLAIN on or off.
.genfkey ?OPTIONS? Options are:
 --no-drop: Do not drop old fkey triggers.
 --ignore-errors: Ignore tables with fkey errors
 --exec: Execute generated SQL immediately
 See file tool/genfkey.README in the source
 distribution for further information.
.header(s) ON|OFF Turn display of headers on or off
.help Show this message
.import FILE TABLE Import data from FILE into TABLE
.indices TABLE Show names of all indices on TABLE
.iotrace FILE Enable I/O diagnostic logging to FILE
.load FILE ?ENTRY? Load an extension library
.mode MODE ?TABLE? Set output mode where MODE is one of:
 csv Comma-separated values

Command Line Shell For SQLite http://www.sqlite.org/sqlite.html

2 von 8 02.12.2010 14:59

 column Left-aligned columns. (See .width)
 html HTML <table> code
 insert SQL insert statements for TABLE
 line One value per line
 list Values delimited by .separator string
 tabs Tab-separated values
 tcl TCL list elements
.nullvalue STRING Print STRING in place of NULL values
.output FILENAME Send output to FILENAME
.output stdout Send output to the screen
.prompt MAIN CONTINUE Replace the standard prompts
.quit Exit this program
.read FILENAME Execute SQL in FILENAME
.restore ?DB? FILE Restore content of DB (default "main") from FILE
.schema ?TABLE? Show the CREATE statements
.separator STRING Change separator used by output mode and .import
.show Show the current values for various settings
.tables ?PATTERN? List names of tables matching a LIKE pattern
.timeout MS Try opening locked tables for MS milliseconds
.timer ON|OFF Turn the CPU timer measurement on or off
.width NUM NUM ... Set column widths for "column" mode
sqlite>

Changing Output Formats

The sqlite3 program is able to show the results of a query in eight different formats:
"csv", "column", "html", "insert", "line", "list", "tabs", and "tcl". You can use the
".mode" dot command to switch between these output formats.

The default output mode is "list". In list mode, each record of a query result is written
on one line of output and each column within that record is separated by a specific
separator string. The default separator is a pipe symbol ("|"). List mode is especially
useful when you are going to send the output of a query to another program (such as
AWK) for additional processing.

sqlite> .mode list
sqlite> select * from tbl1;
hello|10
goodbye|20
sqlite>

You can use the ".separator" dot command to change the separator for list mode. For
example, to change the separator to a comma and a space, you could do this:

sqlite> .separator ", "
sqlite> select * from tbl1;
hello, 10
goodbye, 20
sqlite>

In "line" mode, each column in a row of the database is shown on a line by itself.
Each line consists of the column name, an equal sign and the column data.
Successive records are separated by a blank line. Here is an example of line mode
output:

sqlite> .mode line
sqlite> select * from tbl1;
one = hello
two = 10

one = goodbye
two = 20
sqlite>

Command Line Shell For SQLite http://www.sqlite.org/sqlite.html

3 von 8 02.12.2010 14:59

In column mode, each record is shown on a separate line with the data aligned in
columns. For example:

sqlite> .mode column
sqlite> select * from tbl1;
one two
---------- ----------
hello 10
goodbye 20
sqlite>

By default, each column is at least 10 characters wide. Data that is too wide to fit in a
column is truncated. You can adjust the column widths using the ".width" command.
Like this:

sqlite> .width 12 6
sqlite> select * from tbl1;
one two
------------ ------
hello 10
goodbye 20
sqlite>

The ".width" command in the example above sets the width of the first column to 12
and the width of the second column to 6. All other column widths were unaltered.
You can gives as many arguments to ".width" as necessary to specify the widths of
as many columns as are in your query results.

If you specify a column a width of 0, then the column width is automatically adjusted
to be the maximum of three numbers: 10, the width of the header, and the width of
the first row of data. This makes the column width self-adjusting. The default width
setting for every column is this auto-adjusting 0 value.

The column labels that appear on the first two lines of output can be turned on and
off using the ".header" dot command. In the examples above, the column labels are
on. To turn them off you could do this:

sqlite> .header off
sqlite> select * from tbl1;
hello 10
goodbye 20
sqlite>

Another useful output mode is "insert". In insert mode, the output is formatted to
look like SQL INSERT statements. You can use insert mode to generate text that can
later be used to input data into a different database.

When specifying insert mode, you have to give an extra argument which is the name
of the table to be inserted into. For example:

sqlite> .mode insert new_table
sqlite> select * from tbl1;
INSERT INTO 'new_table' VALUES('hello',10);
INSERT INTO 'new_table' VALUES('goodbye',20);
sqlite>

The last output mode is "html". In this mode, sqlite3 writes the results of the query
as an XHTML table. The beginning <TABLE> and the ending </TABLE> are not
written, but all of the intervening <TR>s, <TH>s, and <TD>s are. The html output
mode is envisioned as being useful for CGI.

Command Line Shell For SQLite http://www.sqlite.org/sqlite.html

4 von 8 02.12.2010 14:59

Writing results to a file

By default, sqlite3 sends query results to standard output. You can change this using
the ".output" command. Just put the name of an output file as an argument to the
.output command and all subsequent query results will be written to that file. Use
".output stdout" to begin writing to standard output again. For example:

sqlite> .mode list
sqlite> .separator |
sqlite> .output test_file_1.txt
sqlite> select * from tbl1;
sqlite> .exit
$ cat test_file_1.txt
hello|10
goodbye|20
$

Querying the database schema

The sqlite3 program provides several convenience commands that are useful for
looking at the schema of the database. There is nothing that these commands do
that cannot be done by some other means. These commands are provided purely as
a shortcut.

For example, to see a list of the tables in the database, you can enter ".tables".

sqlite> .tables
tbl1
tbl2
sqlite>

The ".tables" command is similar to setting list mode then executing the following
query:

SELECT name FROM sqlite_master
WHERE type IN ('table','view') AND name NOT LIKE 'sqlite_%'
UNION ALL
SELECT name FROM sqlite_temp_master
WHERE type IN ('table','view')
ORDER BY 1

In fact, if you look at the source code to the sqlite3 program (found in the source
tree in the file src/shell.c) you'll find exactly the above query.

The ".indices" command works in a similar way to list all of the indices for a particular
table. The ".indices" command takes a single argument which is the name of the
table for which the indices are desired. Last, but not least, is the ".schema"
command. With no arguments, the ".schema" command shows the original CREATE
TABLE and CREATE INDEX statements that were used to build the current database.
If you give the name of a table to ".schema", it shows the original CREATE statement
used to make that table and all if its indices. We have:

sqlite> .schema
create table tbl1(one varchar(10), two smallint)
CREATE TABLE tbl2 (
 f1 varchar(30) primary key,
 f2 text,
 f3 real
)
sqlite> .schema tbl2

Command Line Shell For SQLite http://www.sqlite.org/sqlite.html

5 von 8 02.12.2010 14:59

CREATE TABLE tbl2 (
 f1 varchar(30) primary key,
 f2 text,
 f3 real
)
sqlite>

The ".schema" command accomplishes the same thing as setting list mode, then
entering the following query:

SELECT sql FROM
 (SELECT * FROM sqlite_master UNION ALL
 SELECT * FROM sqlite_temp_master)
WHERE type!='meta'
ORDER BY tbl_name, type DESC, name

Or, if you give an argument to ".schema" because you only want the schema for a
single table, the query looks like this:

SELECT sql FROM
 (SELECT * FROM sqlite_master UNION ALL
 SELECT * FROM sqlite_temp_master)
WHERE type!='meta' AND sql NOT NULL AND name NOT LIKE 'sqlite_%'
ORDER BY substr(type,2,1), name

You can supply an argument to the .schema command. If you do, the query looks
like this:

SELECT sql FROM
 (SELECT * FROM sqlite_master UNION ALL
 SELECT * FROM sqlite_temp_master)
WHERE tbl_name LIKE '%s'
 AND type!='meta' AND sql NOT NULL AND name NOT LIKE 'sqlite_%'
ORDER BY substr(type,2,1), name

The "%s" in the query is replace by your argument. This allows you to view the
schema for some subset of the database.

sqlite> .schema %abc%

Along these same lines, the ".table" command also accepts a pattern as its first
argument. If you give an argument to the .table command, a "%" is both appended
and prepended and a LIKE clause is added to the query. This allows you to list only
those tables that match a particular pattern.

The ".databases" command shows a list of all databases open in the current
connection. There will always be at least 2. The first one is "main", the original
database opened. The second is "temp", the database used for temporary tables.
There may be additional databases listed for databases attached using the ATTACH
statement. The first output column is the name the database is attached with, and
the second column is the filename of the external file.

sqlite> .databases

Converting An Entire Database To An ASCII Text File

Use the ".dump" command to convert the entire contents of a database into a single
ASCII text file. This file can be converted back into a database by piping it back into
sqlite3.

Command Line Shell For SQLite http://www.sqlite.org/sqlite.html

6 von 8 02.12.2010 14:59

A good way to make an archival copy of a database is this:

$ echo '.dump' | sqlite3 ex1 | gzip -c >ex1.dump.gz

This generates a file named ex1.dump.gz that contains everything you need to
reconstruct the database at a later time, or on another machine. To reconstruct the
database, just type:

$ zcat ex1.dump.gz | sqlite3 ex2

The text format is pure SQL so you can also use the .dump command to export an
SQLite database into other popular SQL database engines. Like this:

$ createdb ex2
$ sqlite3 ex1 .dump | psql ex2

Other Dot Commands

The ".explain" dot command can be used to set the output mode to "column" and to
set the column widths to values that are reasonable for looking at the output of an
EXPLAIN command. The EXPLAIN command is an SQLite-specific SQL extension that
is useful for debugging. If any regular SQL is prefaced by EXPLAIN, then the SQL
command is parsed and analyzed but is not executed. Instead, the sequence of
virtual machine instructions that would have been used to execute the SQL command
are returned like a query result. For example:

sqlite> .explain
sqlite> explain delete from tbl1 where two<20;
addr opcode p1 p2 p3
---- ------------ ----- ----- -------------------------------------
0 ListOpen 0 0
1 Open 0 1 tbl1
2 Next 0 9
3 Field 0 1
4 Integer 20 0
5 Ge 0 2
6 Key 0 0
7 ListWrite 0 0
8 Goto 0 2
9 Noop 0 0
10 ListRewind 0 0
11 ListRead 0 14
12 Delete 0 0
13 Goto 0 11
14 ListClose 0 0

The ".timeout" command sets the amount of time that the sqlite3 program will wait
for locks to clear on files it is trying to access before returning an error. The default
value of the timeout is zero so that an error is returned immediately if any needed
database table or index is locked.

And finally, we mention the ".exit" command which causes the sqlite3 program to
exit.

Using sqlite3 in a shell script

One way to use sqlite3 in a shell script is to use "echo" or "cat" to generate a
sequence of commands in a file, then invoke sqlite3 while redirecting input from the
generated command file. This works fine and is appropriate in many circumstances.

Command Line Shell For SQLite http://www.sqlite.org/sqlite.html

7 von 8 02.12.2010 14:59

But as an added convenience, sqlite3 allows a single SQL command to be entered on
the command line as a second argument after the database name. When the sqlite3
program is launched with two arguments, the second argument is passed to the
SQLite library for processing, the query results are printed on standard output in list
mode, and the program exits. This mechanism is designed to make sqlite3 easy to
use in conjunction with programs like "awk". For example:

$ sqlite3 ex1 'select * from tbl1' |
> awk '{printf "<tr><td>%s<td>%s\n",$1,$2 }'
<tr><td>hello<td>10
<tr><td>goodbye<td>20
$

Ending shell commands

SQLite commands are normally terminated by a semicolon. In the shell you can also
use the word "GO" (case-insensitive) or a slash character "/" on a line by itself to end
a command. These are used by SQL Server and Oracle, respectively. These won't
work in sqlite3_exec(), because the shell translates these into a semicolon before
passing them to that function.

Compiling the sqlite3 program from sources

The source code to the sqlite3 command line interface is in a single file named
"shell.c" which you can download from the SQLite website. Compile this file (together
with the sqlite3 library source code to generate the executable. For example:

gcc -o sqlite3 shell.c sqlite3.c -ldl -lpthread

Command Line Shell For SQLite http://www.sqlite.org/sqlite.html

8 von 8 02.12.2010 14:59

